ACT: Mathematics Formulas

Math Concepts to Review: decimals/place value, fractions/mixed numbers, integers (...-3, -2, -1, 0, 1, 2, 3...), scientific notation, factors (divide into a number without a remainder), multiples (skip count by a given number), ratios, proportions, percents (literally means "per 100"), P(G)EMDAS (order of operations), types of numbers (rational, irrational...), prime/composite, absolute value, square roots

Arithmetic Sequences: $t_n = t_1 + d(n - 1)$ {e.g. 1, 3, 5, 7... where (d) is the common difference} **Geometric Sequences:** $t_n = t_1 r^{(n-1)}$ {e.g. 1, 5, 25, 125... where (r) is the common ratio} **Statistics:** mean (average; $\frac{sum of values}{number of values}$), median (middle number when data is arranged from least to greatest; find average of middle two if no single center data point), mode (value in data which occurs most in set), range (difference between max and min value in data set)

 $x^{0} = 1$ $\frac{x^{a}}{x^{b}} = x^{a-b}$ $(x^{a})^{b} = x^{a+b}$

favorable outcomes Probability: possible outcomes

Combinations: multiply choices

d=rtAverage Speed:

Work: *w=rt* Combined Work: $w = (r_1 + r_2)t$

PARALLEL lines = same slope

Exponents & Roots:

$$x^{a} \cdot x^{b} = x^{a+b} \qquad x^{-a} = \frac{1}{x^{a}}$$

Lines: SLOPE OF A LINE $m = \frac{y_2 - y_1}{x_2 - x_1}$ or $\frac{\Delta y}{\Delta x}$ rise

PERPENDICULAR lines = slopes are negative reciprocals

 $\sqrt[a]{x} = x^{\frac{1}{a}} \qquad x^{\frac{b}{a}} = \sqrt[a]{x^{b}}$

SLOPE-INTERCEPT FORM y = mx + bPOINT-SLOPE FORM $y - y_1 = m(x - x_1)$

MIDPOINT FORMULA $\frac{x_1 + x_2}{2}$, $\frac{y_1 + y_2}{2}$

Exponential Functions:

Growth/Decay {change percent (r) to decimal}

 $(xy)^a = x^a \cdot y^a$

$$A(t) = A_o(1 \pm r)^t$$

DISTANCE FORMULA $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ Interest {n times for t years, A_o is initial value} $A(t) = A (1 + \frac{r}{2})^{nt}$ $A(t) = A_{o} (1 \pm \frac{r}{r})^{nt}$

Domain: set of possible x values

Range: set of possible y values

System of Equations: use elimination (linear combination/subtracting) or substitution; if answer is true there are infinite solutions (lines are same & slope and y-intercept are same), if answer is false there are no solutions (lines are parallel & slope is same but y-intercept is different), x = a # if lines intersect at one point

Factorial: 5! is read "5 factorial" and is solved by 5×4×3×2×1...most calculators have a factorial function

Complex Numbers: in the form a + bi where $i = \sqrt{-1}$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ Multiply by the conjugate to rationalize the denominator: $(3 + 4i)(3 - 4i) = (9 - 16i^2) = 25$

Logarithms: $y = log_{b}x$ converts to exponent form $b^{y} = x$ $\log_{b} b^{n} = n$ $\log_{b} xy = \log_{b} x + \log_{b} y$ $log_{b}x^{y} = ylog_{b}x$ $log_{b}(\frac{x}{y}) = log_{b}x - log_{b}y$

©2022, Summit View Mathematics. All rights reserved.

Change of base formula $\log_b(a) = \frac{\log_b}{\log_b}(a)$ Change

Parabolas: STANDARD FORM $y = ax^2 + bx + c$ Factor with "reverse FOIL" to solve $x^2 + (b+a)x + ab = (x+a)(x+b)$ or use the QUADRATIC FORMULA $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ vertex= $(-\frac{b}{2a})$, plug value back into equation) VERTEX FORM $y = a(x - h)^2 + k$ vertex=(h, k)y = a(x-p)(x-q) x-intercepts/zeroes/solutions=(p,0) & (q,0) vertex=(midpoint of two zeroes, plug value back in to find y) FACTORED/ INTERCEPT FORM This is the expression under the radical in the Quadratic Formula DISCRIMINANT if $b^2 - 4ac > 0$ then 2 real solutions if $b^2 - 4ac = 0$ then 1 real solution if $b^2 - 4ac < 0$ then 0 real solutions, 2 imaginary **Circles:** AREA OF CIRCLE $A = \pi r^2$ AREA OF SECTOR $\frac{n^\circ}{360} \cdot \pi r^2$ CIRCUMFERENCE OF CIRCLE $C = 2\pi r$ LENGTH OF ARC $\frac{n^\circ}{360} \cdot 2\pi r$ Circle=360°=2 π radians Degrees to Radians=degrees $\cdot \frac{\pi}{180}$ Radians to Degrees=radians $\cdot \frac{180}{\pi}$ STANDARD FORM EQUATION OF A CIRCLE with center (h, k) and radius r is $(x - h)^2 + (y - k)^2 = r^2$ CENTRAL ANGLES are congruent to corresponding arc; INSCRIBED ANGLES are half of their corresponding arc measure. **Angles:** SUM OF INTERIOR ANGLES $180(n-2)^{\circ}$ SUM OF EXTERIOR ANGLES 360° INTERSECTING LINES vertical (opposite) angles are congruent and linear pairs add to 180° a° a° PARALLEL LINES $(l \parallel m)$ **COMPLEMENTARY-angles** alternate interior, sum to 90° a° alternate exterior, SUPPLEMENTARY-angles and corresponding a° angles are b° sum to 180° mcongruent b° a° **Perimeter/Area/Volume:** To find PERIMETER of any shape, simply add all side lengths. base₂ l w h 11 l $base_1$ Rectangle Parallelogram (Square if l = w) (Rhombus if l = w) Area of trapezoid = $\left(\frac{\text{base}_1 + \text{base}_2}{2}\right) \cdot h$ Area = lwArea = lhVOLUME OF ANY PRISM/CYLINDER= Area of Base × Height VOLUME OF PYRAMID/CONE= $\frac{1}{2}$ Area of Base × Height SURFACE AREA OF ANY PRISM/PYRAMID= Area of Bases + Area of Sides SURFACE AREA OF CYLINDER= $2(\pi r^2) + 2\pi r(h)$ SURFACE AREA OF CONE= $\pi r^2 + \pi r l$ where r=radius and I=slant height VOLUME OF SPHERE= $V = \frac{4}{3}\pi r^3$ SURFACE AREA OF SPHERE= $4 \pi r^2$ DIAGONAL OF ANY PRISM= $d = \sqrt{l^2 + w^2 + h^2}$

©2022, Summit View Mathematics. All rights reserved.

Triangles: TRIANGLE SUM THEOREM-The sum of the three angles in any triangle must equal 180°. EXTERIOR ANGLE THEOREM- The exterior angle of a triangle is equal to the sum of the remote interior angles. TRIANGLE INEQUALITY THEOREM- The sum of any two sides of a triangle must be greater than the third side. TRIANGLE SIMILARITY- corresponding angles are congruent and sides are in proportion (AA, SSS, SAS) TRIANGLE CONGRUENCY- all corresponding angles and sides are congruent (SSS, ASA, SAS, HL)

©2022, Summit View Mathematics. All rights reserved.